Western Wildfires Fire Clouds Explainer

In this photo taken with a drone provided by the Bootleg Fire Incident Command, a pyrocumulus cloud, also known as a fire cloud, is seen in July over the Bootleg Fire in southern Oregon. Smoke and heat from the massive wildfire in southeastern Oregon created ‘fire clouds’ over the blaze — dangerous columns of smoke and ash that can reach up to 30,000 feet and are visible more than 100 miles away.

Across Northern New Mexico, it’s been a hazy summer and early fall for all to see — and smell. Much of that smoke was blown here by winds from the Bootleg Fire, which raged across south-central Oregon, and the Dixie Fire, which scorched Northern California. As these blazes obliterated hundreds of thousands of acres of forest, the roiling flames launched massive smoke plumes high into the atmosphere.

Typically, the smoke has been lofted to a few miles above ground, and then picked up and carried by wind currents across the country, much like weather fronts that carry moisture and bring rain to blanket New York City and the eastern seaboard in a thick haze.

But the Bootleg Fire also sent up a towering vertical plume lofting smoke to a record-breaking 10 miles. Intensely hot fires from dense fuels, local weather conditions and dry surface and high-altitude atmospheric clouds conspired to cause the plume to rise far above ordinary clouds.

When you see these pyrocumulonimbus, you know you’ve got big trouble below. These clouds are so intense that they modify local weather and create amazing lightning storms that can ignite more fires.

In recent years, megafires and their blanketing haze have become an increasingly familiar sight, along with the towering thunderheads of smoke that form above them. Yet we’re only beginning to learn what causes those awe-inspiring “fire clouds,” what’s in them and what effects they have on weather and climate.

Through a combination of field observations, experimental work in the laboratory and computer modeling at local to global scales, our team at Los Alamos National Laboratory is making progress in understanding the mechanisms and climate impacts of pyrocumulonimbus from recent megafires in British Columbia (2017) and Australia (2019-20).

This work brings benefits on two fronts. It will give us a sharper picture of what’s driving climate change, and it will help us develop more effective computer tools to fight fires and mitigate their danger.

The hot breath of hell

Pyrocumulonimbus have a story to tell. Looming in the stratosphere higher than Everest, these billowing clouds of smoke, moisture and gas appear only above the largest megafires, like the hot breath of hell. They lash out with lightning and even fire tornadoes, turbocharging local winds that feed the fire so it surges into unburned areas. This year, one fire in British Columbia generated 700,000 lightning strokes, as many strokes as British Columbia typically gets in one year. The 2017 British Columbia fires created five pyrocumulonimbus clouds in one day that pumped more than 220,000 tons of smoke into the lower stratosphere in just five hours.

That’s not all. By injecting soot and other particles known collectively as aerosols into the stratosphere — the lofty region of the atmosphere that starts several miles above Earth —pyrocumulonimbus clouds have the potential to temporarily alter the climate far from the source of the fire. The smoke blocks warming sunlight from reaching Earth and the lower atmosphere. In addition, the black carbon or soot can absorb sunlight, heating the air, which allows it to rise higher. This effect, discovered by Los Alamos’ late Robert Malone in 1985, has now been verified by observations. New research has found the 2020 Australian fires cooled the globe by about a tenth of a degree Fahrenheit — that’s significant when every tenth of a degree counts in the battle against climate change.



With a goal of refining and calibrating computer models for wildfire and climate, we are studying pyrocumulonimbus clouds from the British Columbia and Australia fires at several scales, from the molecules in the hot gases of a fire, to how the blaze moves across a specific landscape, to how smoke evolves in the atmosphere, and finally to how smoke travels around the globe. Our work also includes laboratory experiments and field observations about smoke gathered by our Center of Aerosol-gas Forensic Experiments, or CAFE, where we study black-carbon emissions and their mixing with organic gases from the fire.

We use this data to validate and refine our computer models, called HIGRAD and FIRETEC. Together, they help us study how fire moves across the landscape and interacts with the atmosphere. We then incorporate results into global climate models.

With this multiscale, interdisciplinary approach, we are able to simulate the evolution of all the gases and particles produced by a fire, from their combustion as wood, forest litter and other fuel to their ultimate fate as particles or droplets (aerosols) trapped in clouds and carried to far-distant sites. Understanding the evolution of those particles is key to understanding the genesis of pyrocumulonimbus clouds, their lifecycle and their impacts.

Our work is ongoing, but, so far, we have seen that, in addition to the British Columbia 2017 fire lofting smoke, gas and particles, the condensation of water and ice on particles released latent heat that energized that lofting, increasing the plume height by about three miles to penetrate the stratosphere. Less than half of the mass of the smoke came from particles emitted by the fire itself. The rest formed by organic-vapors condensing in the cold updrafts, a surprising result.

Mixed effects on climate

Global climate models allow us to study the consequences of huge smoke injection events at a larger scale. In our simulations, the sun heated the black carbon in the smoke. Smoke in the stratosphere can last for months to years, while that in the troposphere, where we live, rains out in a week. Furthermore, soot in smoke absorbs sunlight that heats the air, allowing it to rise further.

Our simulations showed the smoke reached over 12 miles in altitude and smoke remained in the atmosphere about five months before settling out. That relatively short time in the stratosphere limited the long-term climate impacts of the British Columbia fire’s smoke, but regional shorter-term impacts on air quality were significant. Furthermore, the soot deposited on snowpack, oceans and other surfaces may contribute to warming and melting.

We also have begun modeling the much larger and longer-lived New South Wales Australian megafires of 2019-20. They injected up to four times more smoke into the stratosphere than the British Columbia fires. Our preliminary analysis shows this smoke was lofted by the same pyrocumulonimbus mechanisms and also by large-scale uplifting in the western Pacific. Solar heating added more energy, taking the smoke up to more than 15 miles. It stayed aloft for a year and a half.

Our modeling has not produced a definitive prediction about the global cooling effects of the massive injection of soot and aerosols into the stratosphere or the long-term climate-heating effects of gases. More work remains to be done there. One thing is clear, though: Megafires are a fact of life in these days of climate change, increased drought and overgrown forests. Pyrocumulonimbus clouds will continue to impact fire behavior on the ground and the weather above — and beyond. The more we know, the more able we will be to respond to the challenges they bring.

Manvendra Dubey is a Los Alamos National Laboratory fellow and senior scientist who measures smoke and trace gases from fires to understand their effects on health and climate. Jon Reisner is a scientist at Los Alamos, where he models wildfire smoke and other atmospheric phenomenon. A version of this article was first published by ScientificAmerican.com.

(0) comments

Welcome to the discussion.

Thank you for joining the conversation on Santafenewmexican.com. Please familiarize yourself with the community guidelines. Avoid personal attacks: Lively, vigorous conversation is welcomed and encouraged, insults, name-calling and other personal attacks are not. No commercial peddling: Promotions of commercial goods and services are inappropriate to the purposes of this forum and can be removed. Respect copyrights: Post citations to sources appropriate to support your arguments, but refrain from posting entire copyrighted pieces. Be yourself: Accounts suspected of using fake identities can be removed from the forum.